New open modified Newton Cotes type formulae as multilayer symplectic integrators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation

In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...

متن کامل

High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems

The connection between closed Newton-Cotes, trigonometrically-fitted differential methods and symplectic integrators is investigated in this paper. It is known from the literature that several one step symplectic integrators have been obtained based on symplectic geometry. However, the investigation of multistep symplectic integrators is very poor. Zhu et al. (1996) presented the well known ope...

متن کامل

Symplectic integrators for spin systems.

We present a symplectic integrator, based on the implicit midpoint method, for classical spin systems where each spin is a unit vector in R{3}. Unlike splitting methods, it is defined for all Hamiltonians and is O(3)-equivariant, i.e., coordinate-independent. It is a rare example of a generating function for symplectic maps of a noncanonical phase space. It yields a new integrable discretizatio...

متن کامل

The accuracy of symplectic integrators

We judge symplectic integrators by the accuracy with which they represent the Hamil-tonian function. This accuracy is computed, compared and tested for several diierent methods. We develop new, highly accurate explicit fourth-and fth-order methods valid when the Hamiltonian is separable with quadratic kinetic energy. For the near-integrable case, we connrm several of their properties expected f...

متن کامل

Symplectic Integrators in Numerical Relativity

The purpose of this note is to point out that a naive application of symplectic integration schemes such as SHAKE or RATTLE which preserve holonomic constraints encounters difficulties when applied to the numerical treatment of the equations of general relativity. It is well known that the equations of General Relativity (GR) can be derived from a variational principle and that they can be cast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematical Modelling

سال: 2013

ISSN: 0307-904X

DOI: 10.1016/j.apm.2012.05.001